English Czech
Two reference models have been successful in the networking community : the OSI reference model and the TCP/IP reference model. We discuss them briefly in this section.
transport layer entities exchange *segments*
This is an unpolished draft of the third edition of this e-book. If you find any error or have suggestions to improve the text, please create an issue via https://github.com/CNP3/ebook/issues?milestone=3 or help us by providing pull requests to close the existing issues.
The upper layer of our architecture is the `Application layer`. This layer includes all the mechanisms and data structures that are necessary for the applications. We will use Application Data Unit (ADU) or the generic Service Data Unit (SDU) term to indicate the data exchanged between two entities of the Application layer.
The Transport layer
the Transport layer
The TCP/IP reference model
There is now a rough consensus for the greater use of the Unicode_ character format. Unicode can represent more than 100,000 different characters from the known written languages on Earth. Maybe one day, all computers will only use Unicode to represent all their stored characters and Unicode could become the standard format to exchange characters, but we are not yet at this stage today.
The reference models
the Physical layer may deliver `more` bits to the receiver than the bits sent by the sender
the Physical layer may deliver `fewer` bits to the receiver than the bits sent by the sender
the Physical layer may change, e.g. due to electromagnetic interference, the value of a bit being transmitted
The Physical layer
The OSI reference model
The Network layer
the Link layer which combines the functions of the physical and datalink layers of our five-layer reference model
the Internet layer which is equivalent to the network layer of our reference model
The five layers reference model
The `Datalink layer` builds on the service provided by the underlying physical layer. The `Datalink layer` allows two hosts that are directly connected through the physical layer to exchange information. The unit of information exchanged between two entities in the `Datalink layer` is a frame. A frame is a finite sequence of bits. Some `Datalink layers` use variable-length frames while others only use fixed-length frames. Some `Datalink layers` provide a connection-oriented service while others provide a connectionless service. Some `Datalink layers` provide reliable delivery while others do not guarantee the correct delivery of the information.
The `Datalink layer` allows directly connected hosts to exchange information, but it is often necessary to exchange information between hosts that are not attached to the same physical medium. This is the task of the `network layer`. The `network layer` is built above the `datalink layer`. Network layer entities exchange `packets`. A `packet` is a finite sequence of bytes that is transported by the datalink layer inside one or more frames. A packet usually contains information about its origin and its destination, and usually passes through several intermediate devices called routers on its way from its origin to its destination.