English French
The third decision was the frame format. The experimental 3 Mbps Ethernet network built at Xerox used short frames containing 8 bit source and destination addresses fields, a 16 bit type indication, up to 554 bytes of payload and a 16 bit CRC. Using 8 bit addresses was suitable for an experimental network, but it was clearly too small for commercial deployments. Although the initial Ethernet specification [DIX]_ only allowed up to 1024 hosts on an Ethernet network, it also recommended three important changes compared to the networking technologies that were available at that time. The first change was to require each host attached to an Ethernet network to have a globally unique datalink layer address. Until then, datalink layer addresses were manually configured on each host. [DP1981]_ went against that state of the art and noted "`Suitable installation-specific administrative procedures are also needed for assigning numbers to hosts on a network. If a host is moved from one network to another it may be necessary to change its host number if its former number is in use on the new network. This is easier said than done, as each network must have an administrator who must record the continuously changing state of the system (often on a piece of paper tacked to the wall !). It is anticipated that in future office environments, hosts locations will change as often as telephones are changed in present-day offices.`" The second change introduced by Ethernet was to encode each address as a 48 bits field [DP1981]_. 48 bit addresses were huge compared to the networking technologies available in the 1980s, but the huge address space had several advantages [DP1981]_ including the ability to allocate large blocks of addresses to manufacturers. Eventually, other LAN technologies opted for 48 bits addresses as well [IEEE802]_ . The third change introduced by Ethernet was the definition of `broadcast` and `multicast` addresses. The need for `multicast` Ethernet was foreseen in [DP1981]_ and thanks to the size of the addressing space it was possible to reserve a large block of multicast addresses for each manufacturer.
The transport and datalink layers usually chose different strategies to place their CRCs or checksums. Transport layer protocols usually place their CRCs or checksums in the segment header. Datalink layer protocols sometimes place their CRC in the frame header, but often in a trailer at the end of the frame. This choice reflects implementation assumptions, but also influences performance :rfc:`893`. When the CRC is placed in the trailer, as in Ethernet, the datalink layer can compute it while transmitting the frame and insert it at the end of the transmission. All Ethernet interfaces use this optimization today. When the checksum is placed in the header, as in a TCP segment, it is impossible for the network interface to compute it while transmitting the segment. Some network interfaces provide hardware assistance to compute the TCP checksum, but this is more complex than if the TCP checksum were placed in the trailer [#ftso]_.
Thick coaxial cable, 500m
Thin coaxial cable, 185m
To determine the state of its other ports, the switch compares its own `BPDU` with the last `BPDU` received on each port. Note that the comparison is done by using the `BPDUs` and not the `root priority vectors`. If the switch's `BPDU` is better than the last `BPDU` of this port, the port becomes a `Designated` port. Otherwise, the port becomes a `Blocked` port.
To illustrate the operation of the `Spanning Tree Protocol`, let us consider the simple network topology in the figure below.
Two multi-mode optical fiber, 2 km maximum
Two multi-mode or single mode optical fibers with lasers
Two pairs of category 3+ UTP
Two pairs shielded twisted pair, 25m maximum
Virtual LANs
Virtual Local Area Networks in a switched Ethernet network
What is the Ethernet service ?
When all switches boot, their `MAC address table` is empty. Assume that host `A` sends a frame towards host `C`. Upon reception of this frame, switch1 updates its `MAC address table` to remember that address `A` is reachable via its West port. As there is no entry for address `C` in switch1's `MAC address table`, the frame is forwarded to both switch2 and switch3. When switch2 receives the frame, its updates its `MAC address table` for address `A` and forwards the frame to host `C` as well as to switch3. switch3 has thus received two copies of the same frame. As switch3 does not know how to reach the destination address, it forwards the frame received from switch1 to switch2 and the frame received from switch2 to switch1... The single frame sent by host `A` will be continuously duplicated by the switches until their `MAC address table` contains an entry for address `C`. Quickly, all the available link bandwidth will be used to forward all the copies of this frame. As Ethernet does not contain any `TTL` or `HopLimit`, this loop will never stop.
Where should the CRC be located in a frame ?
yes