English
When all switches boot, their `MAC address table` is empty. Assume that host `A` sends a frame towards host `C`. Upon reception of this frame, switch1 updates its `MAC address table` to remember that address `A` is reachable via its West port. As there is no entry for address `C` in switch1's `MAC address table`, the frame is forwarded to both switch2 and switch3. When switch2 receives the frame, its updates its `MAC address table` for address `A` and forwards the frame to host `C` as well as to switch3. switch3 has thus received two copies of the same frame. As switch3 does not know how to reach the destination address, it forwards the frame received from switch1 to switch2 and the frame received from switch2 to switch1... The single frame sent by host `A` will be continuously duplicated by the switches until their `MAC address table` contains an entry for address `C`. Quickly, all the available link bandwidth will be used to forward all the copies of this frame. As Ethernet does not contain any `TTL` or `HopLimit`, this loop will never stop.
When developing its family of standards, the `IEEE 802.11 working group <http://www.ieee802.org/11/>`_ took a similar approach as the `IEEE 802.3 working group <http://www.ieee802.org/3/>`_ that developed various types of physical layers for Ethernet networks. 802.11 networks use the CSMA/CA Medium Access Control technique described earlier and they all assume the same architecture and use the same frame format.
Where should the CRC be located in a frame ?
While most of the frequency ranges of the radio spectrum are reserved for specific applications and require a special license, there are a few exceptions. These exceptions are known as the `Industrial, Scientific and Medical <http://en.wikipedia.org/wiki/ISM_band>`_ (ISM) radio bands. These bands can be used for industrial, scientific and medical applications without requiring a license from the regulator. For example, some radio-controlled models use the 27 MHz ISM band and some cordless telephones operate in the 915 MHz ISM. In 1985, the 2.400-2.500 GHz band was added to the list of ISM bands. This frequency range corresponds to the frequencies that are emitted by microwave ovens. Sharing this band with licensed applications would have likely caused interference, given the large number of microwave ovens that are used. Despite the risk of interference with microwave ovens, the opening of the 2.400-2.500 GHz allowed the networking industry to develop several wireless network techniques to allow computers to exchange data without using cables. In this section, we discuss in more detail the most popular one, i.e. the WiFi [IEEE802.11]_ family of wireless networks. Other wireless networking techniques such as `BlueTooth <http://en.wikipedia.org/wiki/BlueTooth>`_ or `HiperLAN <http://en.wikipedia.org/wiki/HiperLAN>`_ use the same frequency range.
While SLIP was implemented and used in some environments, it had several limitations discussed in :rfc:`1055`. The `Point-to-Point Protocol` (PPP) was designed shortly after and is specified in :rfc:`1548`. PPP aims to support IP and other network layer protocols over various types of serial lines. PPP is in fact a family of three protocols that are used together :
yes