|
802.11b
|
|
4.3 Mbps
|
|
11 Mbps
|
|
38/140
|
|
802.11g
|
|
19 Mbps
|
|
802.11n
|
|
2.4/5 GHz
|
|
74 Mbps
|
|
150 Mbps
|
|
70/250
|
|
When developing its family of standards, the `IEEE 802.11 working group <http://www.ieee802.org/11/>`_ took a similar approach as the `IEEE 802.3 working group <http://www.ieee802.org/3/>`_ that developed various types of physical layers for Ethernet networks. 802.11 networks use the CSMA/CA Medium Access Control technique described earlier and they all assume the same architecture and use the same frame format.
|
|
The architecture of WiFi networks is slightly different from the Local Area Networks that we have discussed until now. There are, in practice, two main types of WiFi networks : `independent` or `adhoc` networks and `infrastructure` networks [#fBSS]_. An `independent` or `adhoc` network is composed of a set of devices that communicate with each other. These devices play the same role and the `adhoc` network is usually not connected to the global Internet. `Adhoc` networks are used when for example a few laptops need to exchange information or to connect a computer with a WiFi printer.
|
|
An 802.11 independent or adhoc network
|
|
Most WiFi networks are `infrastructure` networks. An `infrastructure` network contains one or more `access points` that are attached to a fixed Local Area Network (usually an Ethernet network) that is connected to other networks such as the Internet. The figure below shows such a network with two access points and four WiFi devices. Each WiFi device is associated to one access point and uses this access point as a relay to exchange frames with the devices that are associated to another access point or reachable through the LAN.
|
|
An 802.11 infrastructure network
|
|
An 802.11 access point is a relay that operates in the datalink layer like switches. The figure below represents the layers of the reference model that are involved when a WiFi host communicates with a host attached to an Ethernet network through an access point.
|
|
802.11 devices exchange variable length frames, which have a slightly different structure than the simple frame format used in Ethernet LANs. We review the key parts of the 802.11 frames. Additional details may be found in [IEEE802.11]_ and [Gast2002]_ . An 802.11 frame contains a fixed length header, a variable length payload that may contain up 2324 bytes of user data and a 32 bits CRC. Although the payload can contain up to 2324 bytes, most 802.11 deployments use a maximum payload size of 1500 bytes as they are used in `infrastructure` networks attached to Ethernet LANs. An 802.11 data frame is shown below.
|
|
802.11 data frame format
|
|
The first part of the 802.11 header is the 16 bit `Frame Control` field. This field contains flags that indicate the type of frame (data frame, RTS/CTS, acknowledgment, management frames, etc), whether the frame is sent to or from a fixed LAN, etc [IEEE802.11]_. The `Duration` is a 16 bit field that is used to reserve the transmission channel. In data frames, the `Duration` field is usually set to the time required to transmit one acknowledgment frame after a SIFS delay. Note that the `Duration` field must be set to zero in multicast and broadcast frames. As these frames are not acknowledged, there is no need to reserve the transmission channel after their transmission. The `Sequence control` field contains a 12 bits sequence number that is incremented for each data frame and a 4 bits fragment number.
|