This comparison takes into account the modulo :math:`2^{6}` arithmetic used to increment the sequence numbers. Intuitively, the comparison divides the circle of all sequence numbers into two halves. Usually, the sequence number of the received LSP is equal to the sequence number of the stored LSP incremented by one, but sometimes the sequence numbers of two successive LSPs may differ, e.g. if one router has been disconnected for some time. The comparison above worked well until October 27, 1980. On this day, the ARPANET crashed completely. The crash was complex and involved several routers. At one point, LSP `40` and LSP `44` from one of the routers were stored in the LSDB of some routers in the ARPANET. As LSP `44` was the newest, it should have replaced LSP `40` on all routers. Unfortunately, one of the ARPANET routers suffered from a memory problem and sequence number `40` (`101000` in binary) was replaced by `8` (`001000` in binary) in the buggy router and flooded. Three LSPs were present in the network and `44` was newer than `40` which is newer than `8`, but unfortunately `8` was considered to be newer than `44`... All routers started to exchange these three link state packets forever and the only solution to recover from this problem was to shutdown the entire network :rfc:`789`.