Source string Source string

English Actions
Connecting two hosts
This is an unpolished draft of the third edition of this e-book. If you find any error or have suggestions to improve the text, please create an issue via https://github.com/CNP3/ebook/issues?milestone=1 or help us by providing pull requests to close the existing issues.
The first step when building a network, even a worldwide network such as the Internet, is to connect two hosts together. This is illustrated in the figure below.
To enable the two hosts to exchange information, they need to be linked together by some kind of physical media. Computer networks have used various types of physical media to exchange information, notably :
`electrical cable`. Information can be transmitted over different types of electrical cables. The most common ones are the twisted pairs (that are used in the telephone network, but also in enterprise networks) and the coaxial cables (that are still used in cable TV networks, but are no longer used in enterprise networks). Some networking technologies operate over the classical electrical cable.
`optical fiber`. Optical fibers are frequently used in public and enterprise networks when the distance between the communication devices is larger than one kilometer. There are two main types of optical fibers : multi-mode and single-mode. Multi-mode is much cheaper than single-mode fiber because a LED can be used to send a signal over a multi-mode fiber while a single-mode fiber must be driven by a laser. Due to the different modes of propagation of light, multi-mode fibers are limited to distances of a few kilometers while single-mode fibers can be used over distances greater than several tens of kilometers. In both cases, repeaters can be used to regenerate the optical signal at one endpoint of a fiber to send it over another fiber.
`wireless`. In this case, a radio signal is used to encode the information exchanged between the communicating devices. Many types of modulation techniques are used to send information over a wireless channel and there is lot of innovation in this field with new techniques appearing every year. While most wireless networks rely on radio signals, some use a laser that sends light pulses to a remote detector. These optical techniques allow to create point-to-point links while radio-based techniques can be used to build networks containing devices spread over a small geographical area.
The physical layer
These physical media can be used to exchange information once this information has been converted into a suitable electrical signal. Entire telecommunication courses and textbooks are devoted to the problem of converting analog or digital information into an electrical signal so that it can be transmitted over a given physical `link`. In this book, we only consider two very simple schemes that allow to transmit information over an electrical cable. This enables us to highlight the key problems when transmitting information over a physical link. We are only interested in techniques that allow transmitting digital information through the wire. Here, we will focus on the transmission of bits, i.e. either `0` or `1`.
Bit rate
In computer networks, the bit rate of the physical layer is always expressed in bits per second. One Mbps is one million bits per second and one Gbps is one billion bits per second. This is in contrast with memory specifications that are usually expressed in bytes (8 bits), KiloBytes (1024 bytes) or MegaBytes (1048576 bytes). Transferring one MByte through a 1 Mbps link lasts 8.39 seconds.
Bits per second
1 Kbps
:math:`10^3`
1 Mbps
:math:`10^6`
1 Gbps
:math:`10^9`
1 Tbps

Loading…

No matching activity found.
Browse all component changes

Glossary

English English
No related strings found in the glossary.

String information

Flags
read-only
Source string location
../../principles/reliability.rst:31
String age
5 years ago
Source string age
5 years ago
Translation file
locale/pot/principles/reliability.pot, string 4