Translation

English
English French Actions
a `multiplexing technique` that enables several applications running on one host to exchange information with another host
To exchange data, the transport protocol encapsulates the SDU produced by its user inside a `segment`. The `segment` is the unit of transfer of information in the transport layer. Transport layer entities always exchange segments. When a transport layer entity creates a segment, this segment is encapsulated by the network layer into a packet which contains the segment as its payload and a network header. The packet is then encapsulated in a frame to be transmitted in the datalink layer.
A `segment` also contains control information, usually stored inside a `header` and the payload that comes from the application. To detect transmission errors, transport protocols rely on checksums or CRCs like the datalink layer protocols.
The figure below shows a typical usage of port numbers. The client process uses port number `1234` while the server process uses port number `5678`. When the client sends a request, it is identified as originating from port number `1234` on the client host and destined to port number `5678` on the server host. When the server process replies to this request, the server's transport layer returns the reply as originating from port `5678` on the server host and destined to port `1234` on the client host.
To support the connection-oriented service, the transport layer needs to include several mechanisms to enrich the connectionless network-layer service. We discuss these mechanisms in the following sections.
Connection establishment
An important difference between the connectionless service and the connection-oriented one is that the transport entities in the latter maintain some state during lifetime of the connection. This state is created when a connection is established and is removed when it is released.
Unfortunately, this scheme is not sufficient to ensure the reliability of the transport service. Consider for example a short-lived transport connection where a single, but important transfer (e.g. money transfer from a bank account) is sent. Such a short-lived connection starts with a `CR` segment acknowledged by a `CA` segment, then the data segment is sent, acknowledged and the connection terminates. Unfortunately, as the network layer service is unreliable, delays combined to retransmissions may lead to the situation depicted in the figure below, where a delayed `CR` and data segments from a former connection are accepted by the receiving entity as valid segments, and the corresponding data is delivered to the user. Duplicating SDUs is not acceptable, and the transport protocol must solve this problem.
To avoid these duplicates, transport protocols require the network layer to bound the `Maximum Segment Lifetime (MSL)`. The organization of the network must guarantee that no segment remains in the network for longer than `MSL` seconds. For example, on today's Internet, `MSL` is expected to be 2 minutes. To avoid duplicate transport connections, transport protocol entities must be able to safely distinguish between a duplicate `CR` segment and a new `CR` segment, without forcing each transport entity to remember all the transport connections that it has established in the past.
A classical solution to avoid remembering the previous transport connections to detect duplicates is to use a clock inside each transport entity. This `transport clock` has the following characteristics :
the `transport clock` is implemented as a `k` bits counter and its clock cycle is such that :math:`2^k \times cycle >> MSL`. Furthermore, the `transport clock` counter is incremented every clock cycle and after each connection establishment. This clock is illustrated in the figure below.
the `transport clock` must continue to be incremented even if the transport entity stops or reboots
Transport clock
It should be noted that `transport clocks` do not need and usually are not synchronized to the real-time clock. Precisely synchronizing real-time clocks is an interesting problem, but it is outside the scope of this document. See [Mills2006]_ for a detailed discussion on synchronizing the real-time clock.
This `transport clock` can now be combined with an exchange of three segments, called the `three way handshake`, to detect duplicates. This `three way handshake` occurs as follows :
The initiating transport entity sends a `CR` segment. This segment requests the establishment of a transport connection. It contains a port number (not shown in the figure) and a sequence number (`seq=x` in the figure below) whose value is extracted from the `transport clock`. The transmission of the `CR` segment is protected by a retransmission timer.
The remote transport entity processes the `CR` segment and creates state for the connection attempt. At this stage, the remote entity does not yet know whether this is a new connection attempt or a duplicate segment. It returns a `CA` segment that contains an acknowledgment number to confirm the reception of the `CR` segment (`ack=x` in the figure below) and a sequence number (`seq=y` in the figure below) whose value is extracted from its transport clock. At this stage, the connection is not yet established.
The initiating entity receives the `CA` segment. The acknowledgment number of this segment confirms that the remote entity has correctly received the `CR` segment. The transport connection is considered to be established by the initiating entity and the numbering of the data segments starts at sequence number `x`. Before sending data segments, the initiating entity must acknowledge the received `CA` segments by sending another `CA` segment.
The remote entity considers the transport connection to be established after having received the segment that acknowledges its `CA` segment. The numbering of the data segments sent by the remote entity starts at sequence number `y`.
The three way handshake is illustrated in the figure below.
Three-way handshake
Thanks to the three way handshake, transport entities avoid duplicate transport connections. This is illustrated by considering the three scenarios below.
The first scenario is when the remote entity receives an old `CR` segment. It considers this `CR` segment as a connection establishment attempt and replies by sending a `CA` segment. However, the initiating host cannot match the received `CA` segment with a previous connection attempt. It sends a control segment (`REJECT` in the figure below) to cancel the spurious connection attempt. The remote entity cancels the connection attempt upon reception of this control segment.
Three-way handshake : recovery from a duplicate `CR`
A second scenario is when the initiating entity sends a `CR` segment that does not reach the remote entity and receives a duplicate `CA` segment from a previous connection attempt. This duplicate `CA` segment cannot contain a valid acknowledgment for the `CR` segment as the sequence number of the `CR` segment was extracted from the transport clock of the initiating entity. The `CA` segment is thus rejected and the `CR` segment is retransmitted upon expiration of the retransmission timer.

Loading…

No matching activity found.
Browse all component changes

Glossary

English French
No related strings found in the glossary.

String information

Source string location
../../principles/transport.rst:650
String age
4 years ago
Source string age
4 years ago
Translation file
locale/fr/LC_MESSAGES/principles/transport.po, string 114