Translation

English
English French Actions
Applications Applications
Networked applications do not exchange random messages. In order to ensure that the server is able to understand the queries sent by a client, and also that the client is able to understand the responses sent by the server, they must both agree on a set of syntactical and semantic rules. These rules define the format of the messages exchanged as well as their ordering. This set of rules is called an application-level `protocol`.
An `application-level protocol` is similar to a structured conversation between humans. Assume that Alice wants to know the current time but does not have a watch. If Bob passes close by, the following conversation could take place :
Alice : `Hello` Alice : `Hello`
Bob : `Hello` Bob : `Hello`
Alice : `What time is it ?` Alice : `Quelle heure est-il ?`
Bob : `11:55` Bob : `11:55`
Alice : `Thank you` Alice : `Merci`
Bob : `You're welcome` Bob : `Avec plaisir`
Such a conversation succeeds if both Alice and Bob speak the same language. If Alice meets Tchang who only speaks Chinese, she won't be able to ask him the current time. A conversation between humans can be more complex. For example, assume that Bob is a security guard whose duty is to only allow trusted secret agents to enter a meeting room. If all agents know a secret password, the conversation between Bob and Trudy could be as follows :
Bob : `What is the secret password ?`
Trudy : `1234` Trudy : `1234`
Bob : `This is the correct password, you're welcome`
If Alice wants to enter the meeting room but does not know the password, her conversation could be as follows :
Alice : `3.1415` Alice : `3.1415`
Bob : `This is not the correct password.` Bob : `Ce n'est pas le bon mot de passe.`
Let us first discuss the syntactical rules. We will later explain how the information flow can be organized by analyzing real networked applications.
Application-layer protocols exchange two types of messages. Some protocols such as those used to support electronic mail exchange messages expressed as strings or lines of characters. As the transport layer allows hosts to exchange bytes, they need to agree on a common representation of the characters. The first and simplest method to encode characters is to use the :term:`ASCII` table. :rfc:`20` provides the ASCII table that is used by many protocols on the Internet. For example, the table defines the following binary representations :
`A` : `1000011b`
`0` : `0110000b`
`z` : `1111010b`
`@` : `1000000b`
`space` : `0100000b`
In addition, the :term:`ASCII` table also defines several non-printable or control characters. These characters were designed to allow an application to control a printer or a terminal. These control characters include `CR` and `LF`, that are used to terminate a line, and the `Bell` character which causes the terminal to emit a sound.

Loading…

User avatar pdan1

New translation

cnp3-ebook / principles/transportFrench

3 years ago
User avatar pdan1

Marked for edit

cnp3-ebook / principles/transportFrench

3 years ago
Browse all component changes

Things to check

Unchanged translation

Source and translation are identical

Reset

Glossary

English French
No related strings found in the glossary.

String information

Source string location
../../principles/transport.rst:44
String age
5 years ago
Source string age
5 years ago
Translation file
locale/fr/LC_MESSAGES/principles/transport.po, string 17