Translation

English
English Czech Actions
An important point to note about the `Datalink layer` is that although the figure below indicates that two entities of the `Datalink layer` exchange frames directly, in reality this is slightly different. When the `Datalink layer` entity on the left needs to transmit a frame, it issues as many `Data.request` primitives to the underlying `physical layer` as there are bits in the frame. The physical layer will then convert the sequence of bits in an electromagnetic or optical signal that will be sent over the physical medium. The `physical layer` on the right hand side of the figure will decode the received signal, recover the bits and issue the corresponding `Data.indication` primitives to its `Datalink layer` entity. If there are no transmission errors, this entity will receive the frame sent earlier.
The Network layer
The `Datalink layer` allows directly connected hosts to exchange information, but it is often necessary to exchange information between hosts that are not attached to the same physical medium. This is the task of the `network layer`. The `network layer` is built above the `datalink layer`. Network layer entities exchange `packets`. A `packet` is a finite sequence of bytes that is transported by the datalink layer inside one or more frames. A packet usually contains information about its origin and its destination, and usually passes through several intermediate devices called routers on its way from its origin to its destination.
The Transport layer
The Application layer
The upper layer of our architecture is the `Application layer`. This layer includes all the mechanisms and data structures that are necessary for the applications. We will use Application Data Unit (ADU) or the generic Service Data Unit (SDU) term to indicate the data exchanged between two entities of the Application layer.
In the remaining chapters of this text, we will often refer to the information exchanged between entities located in different layers. To avoid any confusion, we will stick to the terminology defined earlier, i.e. :
physical layer entities exchange bits
datalink layer entities exchange *frames*
network layer entities exchange *packets*
transport layer entities exchange *segments*
application layer entities exchange *SDUs*
Reference models
Two reference models have been successful in the networking community : the OSI reference model and the TCP/IP reference model. We discuss them briefly in this section.
The TCP/IP reference model
the Application layer
the Transport layer
the Internet layer which is equivalent to the network layer of our reference model
the Link layer which combines the functions of the physical and datalink layers of our five-layer reference model
Besides this difference in the lower layers, the TCP/IP reference model is very close to the five layers that we use throughout this document.
The OSI reference model
Compared to the five layers reference model explained above, the :term:`OSI` reference model defined in [X200]_ is divided in seven layers. The four lower layers are similar to the four lower layers described above. The OSI reference model refined the application layer by dividing it in three layers :
the `Application layer` that contains the mechanisms that do not fit in neither the Presentation nor the Session layer. The OSI Application layer was itself further divided in several generic service elements.

Loading…

User avatar None

New source string

cnp3-ebook / principles/referencemodelsCzech

New source string 5 years ago
Browse all component changes

Glossary

English Czech
No related strings found in the glossary.

String information

Source string location
../../principles/referencemodels.rst:120
String age
5 years ago
Source string age
5 years ago
Translation file
locale/cs/LC_MESSAGES/principles/referencemodels.po, string 30