The full-mesh is the most reliable and highest performing network to interconnect these five hosts. However, this network organization has two important drawbacks. First, if a network contains `n` hosts, then :math:`\frac{n\times(n-1)}{2}` links are required. If the network contains more than a few hosts, it becomes impossible to lay down the required physical links. Second, if the network contains `n` hosts, then each host must have :math:`n-1` interfaces to terminate :math:`n-1` links. This is beyond the capabilities of most hosts. Furthermore, if a new host is added to the network, new links have to be laid down and one interface has to be added to each participating host. However, full-mesh has the advantage of providing the lowest delay between the hosts and the best resiliency against link failures. In practice, full-mesh networks are rarely used except when there are few network nodes and resiliency is key.
The full-mesh is the most reliable and highest performing network to interconnect these five hosts. However, this network organization has two important drawbacks. First, if a network contains `n` hosts, then :math:`\frac{n\times(n-1)}{2}` links are required. If the network contains more than a few hosts, it becomes impossible to lay down the required physical links. Second, if the network contains `n` hosts, then each host must have :math:`n-1` interfaces to terminate :math:`n-1` links. This is beyond the capabilities of most hosts. Furthermore, if a new host is added to the network, new links have to be laid down and one interface has to be added to each participating host. However, full-mesh has the advantage of providing the lowest delay between the hosts and the best resiliency against link failures. In practice, full-mesh networks are rarely used except when there are few network nodes and resiliency is key.